A - Race to 1 Again

匿名 (未验证) 提交于 2019-12-02 23:48:02

Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case begins with an integer N (1 ≤ N ≤ 105).

Output

For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.

Sample Input

3 1 2 50

Sample Output

Case 1: 0 Case 2: 2.00 Case 3: 3.0333333333

给出一个数,每次随机处一个它的因子,求他变成1的期望次数。

令 f[I] 表示i在f[i]此后变成1。

\[ f[i] = \sum_{j|i} (f[j]+1) / k, (k = \sum_j [j|i]) \]

#include<bits/stdc++.h> #define repeat(a,b,c,g) for (int a=b,abck=(g>=0?1:-1);abck*(a)<=abck*(c);a+=g) using namespace std; double f[110000]; int main() {     f[1] = 0;     for (int i=2;i<=100000;i++)     {         double tot = 0;         int tp = -1;         for (int j=1;j<=sqrt(i);j++)         {             if (i % j == 0)             {                 tp ++, tot += f[j] + 1;                 if (j * j != i)                     tp ++, tot += f[i/j] + 1;             }         }         f[i] = tot / tp;     }     int n;     cin >> n;     for (int i=1;i<=n;i++)     {         int tmp;         cin >> tmp;         printf("Case %d: %.7f\n",i,f[tmp]);     } } 
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!