原文作者:lypbendlf
原文链接:https://www.cnblogs.com/BlueBlueSea/p/10778345.html
1.安装pygpu的部分
#使用豆瓣源or不使用,均安装失败
#报错:
Looking in indexes: http://pypi.douban.com/simple/
Collecting pygpu
No matching distribution found for pygpu
#继续尝试使用conda,仍失败
conda install -c conda-forge pygpu`
#报错:
#尝试使用制定安装版本
pip install pygpu==0.7.5
#仍报错:
Collecting pygpu==0.7.5
No matching distribution found for pygpu==0.7.5
//已保证pip是最新的。
#尝试将其拷贝到我的用户目录下
conda create -n my_root --clone="/data_d/public/miniconda2"
#激活环境
source activate my_root
#查看环境信息
#激活环境后再次尝试如下,仍旧失败
conda install pygpu
#使用如下命令之后
sudo chown -R $USER:$USER ~/.conda/
#尝试安装,仍失败
conda install pygpu
一些命令:
# 切换至对应环境安装包
activate env_nameconda install pandas
#指定环境参数进行安装
conda install -n env_name pandas
# 查看已经安装的包
conda list
# 指定查看某环境下安装的package
conda list -n env_name
---------------------
作者:cathar
来源:CSDN
原文:https://blog.csdn.net/cathar/article/details/53729007
版权声明:本文为博主原创文章,转载请附上博文链接!
#尝试更改文件所有者
#报错:
chown: 正在更改'6846611e.json' 的所有者: 不允许的操作
#继续尝试sudo,成功
#再次尝试,失败
conda install pygpu
with open(cache_path, 'w') as fo:
是否是所有相关的json文件所有者都要变成当前用户?尝试一下。
#使用此命令,将cache文件夹下所有json及q等文件的所有者变为当前用户
sudo chown username cache -R
终于成功了!!!
The following NEW packages will be INSTALLED:
Proceed ([y]/n)? y
libgpuarray-0. 100% |###################################################| Time: 0:00:01 223.06 kB/s
markupsafe-1.1 100% |###################################################| Time: 0:00:00 139.96 kB/s
mako-1.0.9-py2 100% |###################################################| Time: 0:00:00 176.48 kB/s
pygpu-0.7.6-py 100% |###################################################| Time: 0:00:01 428.93 kB/s
#python下import
>>> import pygpu
>>> pygpu.__version__
u'0.7.6'
>>> pygpu.__path__
['/data_d/old_home/home/username/.conda/envs/my_root/lib/python2.7/site-packages/pygpu']
对应的python版本是2.7,theno版本是1.0.
2.Theano使用GPU
#import theano报错: RuntimeError: Could not import 'mkl'. If you are using conda, update the numpy packages to the latest build otherwise, set MKL_THREADING_LAYER=GNU in your environment for MKL 2018.
遂更新numpy
conda update numpy #显示如下: The following packages will be UPDATED: mkl: 2017.0.3-0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 2019.3-199 numpy: 1.13.1-py27_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 1.16.3-py27h7e9f1db_0 Proceed ([y]/n)? y
尝试使用pip更新
pip install --upgrade theano
尝试:
THEANO_FLAGS=mode=FAST_RUN,device=cuda,floatX=float32 python test_gpu.py #输出: /.conda/envs/my_root/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than " Using cuDNN version 7201 on context None Mapped name None to device cuda: GeForce GTX 1080 Ti (0000:03:00.0)#映射到了这个显卡 [GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)] Looping 1000 times took 0.221133 seconds Result is [1.2317803 1.6187935 1.5227807 ... 2.2077181 2.2996776 1.623233 ] Used the cpu #最后居然是使用CPU
若不使用GPU:
python test_gpu.py #输出: [Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)] Looping 1000 times took 31.611282 seconds Result is [1.23178032 1.61879341 1.52278065 ... 2.20771815 2.29967753 1.62323285] Used the cpu
//可见时间差距为143倍。。。
尝试:
THEANO_FLAGS=mode=FAST_RUN,device=gpu1,floatX=float32 python test_gpu.py
报错:
File /.conda/envs/my_root/lib/python2.7/site-packages/theano/configdefaults.py", line 116, in filter 'You are tring to use the old GPU back-end. ' ValueError: You are tring to use the old GPU back-end. It was removed from Theano. Use device=cuda* now. See https://github.com/Theano/Theano/wiki/Converting-to-the-new-gpu-back-end%28gpuarray%29 for more information.