版权声明:本文为博主原创文章,转载需要注明来源 https://blog.csdn.net/scheezer/article/details/83791923
背景
因为conda清华的源老旧,pandas还停留在0.20,当前版本已经到了0.23
将清华的源切换回了默认源。
切换后使用conda update --all更新了全部包
问题
切换后运行jupyter,随意执行一行代码即报错:服务似乎挂掉了,但是会立刻重启的
在命令行中提示:Intel MKL FATAL ERROR: Cannot load libmkl_intel_thread.dylib.
解决
查了不少资料,有的说需要使用
conda update conda
然而使用后无效。
执行
conda install nomkl numpy scipy scikit-learn numexpr
提示
conda install nomkl numpy scipy scikit-learn numexpr Solving environment: done ## Package Plan ## environment location: /Users/wangyu/anaconda3 added / updated specs: - nomkl - numexpr - numpy - scikit-learn - scipy The following packages will be downloaded: package | build ---------------------------|----------------- mkl_fft-1.0.1 | py36h917ab60_0 125 KB defaults scikit-learn-0.20.0 | py36hebd9d1a_1 5.4 MB defaults numpy-base-1.15.3 | py36ha711998_0 4.0 MB defaults libopenblas-0.3.3 | hdc02c5d_3 8.4 MB defaults mkl-service-1.1.2 | py36h6b9c3cc_4 10 KB defaults numexpr-2.6.8 | py36hafae301_0 125 KB defaults nomkl-3.0 | 0 48 KB defaults numpy-1.15.3 | py36h926163e_0 35 KB defaults blas-1.0 | openblas 48 KB defaults mkl_random-1.0.1 | py36h78cc56f_0 346 KB defaults scipy-1.1.0 | py36h1a1e112_1 15.4 MB defaults ------------------------------------------------------------ Total: 33.9 MB The following NEW packages will be INSTALLED: libopenblas: 0.3.3-hdc02c5d_3 defaults nomkl: 3.0-0 defaults The following packages will be UPDATED: blas: 1.0-mkl defaults --> 1.0-openblas defaults numexpr: 2.6.8-py36h1dc9127_0 defaults --> 2.6.8-py36hafae301_0 defaults numpy: 1.15.3-py36h6a91979_0 defaults --> 1.15.3-py36h926163e_0 defaults numpy-base: 1.15.3-py36h8a80b8c_0 defaults --> 1.15.3-py36ha711998_0 defaults scikit-learn: 0.20.0-py36h4f467ca_1 defaults --> 0.20.0-py36hebd9d1a_1 defaults scipy: 1.1.0-py36h28f7352_1 defaults --> 1.1.0-py36h1a1e112_1 defaults The following packages will be DOWNGRADED: mkl-service: 1.1.2-py36h6b9c3cc_5 defaults --> 1.1.2-py36h6b9c3cc_4 defaults mkl_fft: 1.0.6-py36hb8a8100_0 defaults --> 1.0.1-py36h917ab60_0 defaults mkl_random: 1.0.1-py36h5d10147_1 defaults --> 1.0.1-py36h78cc56f_0 defaults
确认安装后再运行jupyter,执行无误。
考虑问题出在mkl-service上面,回滚后即解决问题。